

# An analytical comparison of methods used for pose-estimation in surgical navigation systems

#### Presented by Márton Kelemen

Advisor: Tamás Haidegger

Budapest University of Technology and Economics,

Hungary



#### Basics

- CIS, MIS, IGS
- Surgical tracking systems
  - Optical
  - Electromagnetic
  - Other modalities
- Pre-operative 3D-model of the patient (mostly MRI- or CT-based)







# Utilities of intra-operative tracking

Provides a feedback to the surgeon

If robot operates: the joint-variables are well-known -> just for control (detect the crash of incremental encoders or the drift from the initial registration)







#### Objectives

- To find the "optimal" representation for coordinate-transformation
- Elaboration of a method, which makes us able to be more precise by the pose-estimation of the endeffector during the operation





#### 1. Coordinate transformation

- Translation + rotation -> homogeneous transformation matrix
- Comparison between 4 well-known representations (Euler, RPY, axis-angle and quaternion-based)
- Examined their sensitivity for disturbances and non-linear distortions deriving + ability for interpolation (linear or SLERP)
- Result: there aren't significant differences, but the quaternions are mathematically more favourable (matrix-operations, no gimbal lock)





Example: error of various angles depending on the variance of noise being superposed on them, Euler representation (MATLAB)





#### 2. Filtering

- Problem: coupled disturbances can't be removed from useful signal
- Goal: increased accuracy of the estimated pose -> rise of SNR
- Considerations:
  - Noise modeled with Gaussian distribution
  - Process can be stationary or dinamic
  - Filter specification in the time domain
- > 2 methods were examined:
  - Moving average smoothing
  - Kalman filtering





## Moving average smoothing

- ➤ LPF, where span ~ cut-off frequency
- Wider window -> smoother signal, but worse dinamic characteristics (slow response time)
- Conclusion: only for stationary signals

$$v_{i,adj} = \sum_{j=-k}^{k} v_{i+j} w(d_j)$$

$$(2k+1)$$





### Moving averaging (MATLAB)



green =
samples of a 7
Hz signal
magenta =
averaged 7Hz
signal
red = on valuechanges
averaged 7 Hz
signal
blue = 60 Hz
interpolated red
signal



#### Kalman filtering

- Optimal linear estimator, one-step predictorcorrector algorithm
- Weighting between actual measured and formerly estimated value during the Kalman gain
- State space model
- Succeed in tracking dinamic signals too, but with overshoots can't be admitted in surgical applications







# Kalman filtering (MATLAB)



black = original signal blue = filtered signal red = pre-estimated signal





### Other problems emerging

- Not steadily acquired data
- Low resolution camera -> certain walues exist during more samples (see histogram)
- Solution: only the value-changes are taken into consideration
- Rate changing (interpolation and decimation) – not integer factor







- EKF, UKF, Markov-chains, Monte Carlo simulation
- Sensor fusion, hybrid systems
- Development of an intelligent filter by means of a filter bank (event-based estimation)
- Physical modelling (noise still can be removed?) e.g. with finite element method by electromagnetic disturbances





- Lantos Robot control; Academic Publisher, Budapest 2001
- B. Danette Allen, Gary Bishop and Greg Welch "Tracking:
   Beyond 15 Minutes of Thought"; SIGGRAPH 2001, Course 11
- P. Grunnert, K. Darabi, j. Espinosa, R. Filippi "Computer-aided navigation in neurosurgery"; Neurosurg Rev (2003) 26:73-99
- Andreas Tobergte, Mihai Pomarlan and Gerd Hirzinger "Robust Multi Sensor Pose Estimation for Medical Applications"; 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
- Russell H. Taylor, Fellow, IEEE and Dan Stoianovici "Medical Robotics in Computer-Integrated Surgery"; IEEE Transactions On Robotics And Automation, Vol. 19, Nr. 5., October 2003
- Gregory Scott Fischer "Electromagnetic Tracker Characterization and Optimal Tool Design (with Applications to Ent Surgery)";
   John Hopkins University MSc Thesis, Baltimore, Maryland, 2005
- Verena Elisabeth Kremer "Quaternions and SLERP"; Seminar Character Animation, University of Saarbrücken, 2008
- http://www.ndigital.com/medical





Thank you for your attention!

Any questions?

kelemennet@yahoo.com

